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Time-Reversed Dynamical Entropy and
Irreversibility in Markovian Random Processes
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A concept of time-reversed entropy per unit time is introduced in analogy
with the entropy per unit time by Shannon, Kolmogorov, and Sinai. This
time-reversed entropy per unit time characterizes the dynamical randomness
of a stochastic process backward in time, while the standard entropy per unit
time characterizes the dynamical randomness forward in time. The difference
between the time-reversed and standard entropies per unit time is shown to
give the entropy production of Markovian processes in nonequilibrium steady
states.
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1. INTRODUCTION

Fluxes of matter or energy imposed at the boundaries of an open sys-
tem explicitly break the time-reversal symmetry. Indeed, in nonequilibrium
steady-states (NESS), the particles incoming at boundaries typically have
a smooth probability distribution, although the outgoing particles have a
probability distribution which depends on their interaction inside the sys-
tem and are therefore, finely correlated. The time-reversed steady-state is
in principle possible but highly improbable because it would require the
incoming particles to have a probability distribution which is finely cor-
related according to the interaction they will have inside the system and,
in general, the environment from where the particles come does not know
about the interactions taking place inside the system.(1,2) Accordingly, in
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a NESS, the probability distribution of the microscopic trajectories inside
the system differs from the probability distribution of the time-reversed
trajectories so that the system is in an irreversible state. The irreversibility
of a NESS thus finds its origin in the selection of the initial conditions
for the trajectories incoming the open system. Most trajectories have an
initial condition which is different from the initial condition of the time-
reversed trajectory and, moreover, the stationary probability distribution
of a NESS gives a different weight to the forward and backward trajecto-
ries. Therefore, the selection of initial conditions by the flux boundary con-
ditions explicitly breaks the time-reversal symmetry at the statistical level
of description as already noticed in refs. 1 and 2. The breaking of time-
reversal symmetry may manifest itself for instance in some time correlation
functions(3) and we may wonder if the time-reversal symmetry breaking
would not also concern other properties closely related to both the dynam-
ics and the thermodynamics.

In this regard, the irreversibility of a NESS is commonly character-
ized by the production of entropy inside the system. Previous work has
given some hints that entropy production could be related to the dynam-
ical randomness (alias chaos) taking place inside the system. Already, the
escape-rate theory has shown that the transport properties can be related
to the difference between the sum of positive Lyapunov exponents and
the Kolmogorov–Sinai entropy per unit time, establishing a connection
between irreversible properties and the characteristic quantities of dynam-
ical systems theory.(2,4,5) However, the Lyapunov exponents cannot have
their usual definition for random processes describing NESS because most
trajectories spent a finite time inside the system between their incoming
and outgoing times. Therefore, a general relationship between entropy pro-
duction and some quantities of the type of those defined in dynamical sys-
tems theory has been missing.

The purpose of the present paper is to introduce a concept of time-
reversed entropy per unit time similar to the standard entropy per unit time
introduced by Shannon,(6) Kolmogorov,(7) and Sinai.(8) The aim is to char-
acterize the dynamical randomness of the time-reversed trajectories of an
open system and to show that, in a NESS, the entropy production is given
by the difference between the time-reversed entropy per unit time and the
standard entropy per unit time from dynamical systems theory. Our goal
is thus to show that entropy production is due to the manifestation of the
aforementioned breaking of the time-reversal symmetry at the level of the
dynamical randomness of the microscopic trajectories.

The plan of the paper is the following. The concept of time-reversed
entropy per unit time is introduced in Section 2. The relationship bet-
ween the time-reversed and standard dynamical entropies and entropy
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production is proved for time-discrete Markov chains in Section 3 and
for time-continuous jump processes in Section 4. The connection to recent
work by Lebowitz and Spohn(9) and by Maes(10) is discussed in Section 5.
The relationship is applied to reactive processes in Section 6. The connec-
tion to other relationships is discussed in Section 7. Conclusions are drawn
in Section 8.

2. TIME-REVERSED ENTROPY PER UNIT TIME

The concept of entropy per unit time has been introduced in the con-
text of random processes by Shannon(6) and, later, by Kolmogorov(7) and
Sinai(8) in dynamical systems theory. The phase space of the system is par-
titioned into disjoint cells Cω forming the partition P = {C1,C2, . . . ,CN }.
These cells can be considered as the sets of microstates of the total sys-
tem corresponding to the states ω∈{1,2, . . . ,N} of some measuring device
observing the system. The system we consider is open so that the measur-
ing device observes only the degrees of freedom which are internal to the
system but not the degrees of freedom of the environment. The cells of the
partition thus establish a coarse graining which is fine enough to observe
the internal state of the system up to some resolution but not the state of
the environment. The symbolic sequence ωωω = ω0ω1 · · ·ωn−1 defines a path
or history which is a set of trajectories visiting the cells Cω0Cω1 · · ·Cωn−1 at
the successive times tk =kτ (k =0,1, . . . , n−1).

The multiple-time probability to observe the system in the successive
coarse-grained states ω0ω1...ωn−1 at regular time intervals τ is given by

p(ωωω)=p(ω0ω1 . . . ωn−1)=µ
(
Cω0 ∩Φ−τCω1 ∩· · ·∩Φ−(n−1)τCωn−1

)
, (1)

where µ is an invariant measure of the time evolution Φt , which is sup-
posed to be a time-reversal symmetric automorphism. The invariant mea-
sure µ used in Eq. (1) is assumed to be the stationary probability of the
NESS. The standard entropy per unit time of the partition P is defined as
the mean decay rate of the multiple-time probability (1) as(11)

h(P) ≡ lim
n→∞− 1

nτ

∑
ωωω

p(ωωω) ln p(ωωω)

= lim
n→∞− 1

nτ

∑
ω0ω1...ωn−1

p(ω0ω1 . . . ωn−1) ln p(ω0ω1 . . . ωn−1). (2)
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According to the Shannon–McMillan–Breiman theorem(11,12), the
multiple-time probability indeed decays according to

p(ω0ω1 . . . ωn−1)∼ e−nτh(P) (3)

for almost all the trajectories if the process is ergodic. The entropy per
unit time characterizes the dynamical randomness of the time evolution
observed with the measuring device. The supremum of the dynamical
entropy (2) over all the possible partitions P defines the Kolmogorov Sinai
(KS) entropy per unit time of dynamical systems theory.(7,8,11) Accord-
ing to Pesin’s theorem, the KS entropy is given by the sum of positive
Lyapunov exponents.(13) Therefore, the dynamical entropy does not vanish
at equilibrium in chaotic systems contrary to the entropy production and
no proportionality may exist between these concepts.

In order to compare with the properties of the time-reversed tra-
jectories, we consider the time-reversed path (or time-reversed history):
ωωωR =ωn−1 . . . ω1ω0. We are interested by the probability

p(ωωωR)≡p(ωn−1 · · ·ω1ω0) (4)

of occurrence of the time-reversed path in the process taking place in the
NESS. We define the time-reversed entropy per unit time as

hR(P) ≡ lim
n→∞− 1

nτ

∑
ωωω

p(ωωω) ln p(ωωωR)

= lim
n→∞− 1

nτ

∑
ω0ω1...ωn−1

p(ω0ω1 . . . ωn−1) ln p(ωn−1 . . . ω1ω0). (5)

We emphasize that the average is taken with respect to the probability of
the forward path. We can say that the time-reversed entropy per unit time
characterizes the dynamical randomness of the time-reversed paths in the
forward process of the NESS.

Our purpose in the following sections is to prove that the entropy
production �τ

i S over a time interval τ in the stationary state of a Markov-
ian random process is related to the difference between the time-reversed
and standard dynamical entropies (5) and (2) according to the central
result

1
τ

�τ
i S =hR(P)−h(P)�0. (6)



Time-Reversed Dynamical Entropy and Irreversibility 603

The nonnegativity of the entropy production is an immediate consequence
of the fact that the difference hR −h between Eqs. (5) and (2) is a relative
entropy per unit time which is known to be nonnegative.(14)

3. TIME-DISCRETE MARKOV CHAINS

Here, we suppose that the NESS is described by a Markov chain of
probability transitions P(ω|ω′) between the coarse-grained states ω and ω′,
with

∑
ω′

P(ω|ω′)=1. (7)

The probabilities pt (ω) of the coarse-grained states ω evolve in time t ∈Z

according to the evolution equation

∑
ω

pt (ω)P (ω|ω′)=pt+1(ω
′). (8)

Typically, the probabilities pt (ω) undergo a relaxation toward a stationary
state such as a NESS or the equilibrium state where the stationary prob-
abilities denoted by p(ω) satisfy

∑
ω

p(ω)P (ω|ω′)=p(ω′). (9)

In the stationary state, the probability of the path ωωω=ω0ω1 . . . ωn−1 of the
Markov chain is given by

p(ωωω)=p(ω0ω1 . . . ωn−1)=p(ω0)P (ω0|ω1)P (ω1|ω2) · · ·P(ωn−2|ωn−1)

(10)

because of the Markovian property, whereupon the entropy of this path
over a time t is given by

Ht ≡ −
∑
ωωω

p(ωωω) ln p(ωωω) (11)

= −
∑
ω

p(ω) ln p(ω)− (n−1)
∑
ωω′

p(ω)P (ω|ω′) ln P(ω|ω′) (12)
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and the entropy per unit time by

h= lim
t→∞

1
t
Ht =−

∑
ωω′

p(ω)P (ω|ω′) ln P(ω|ω′) (13)

which is the KS entropy of the Markov chain.(11)

On the other hand, the time-reversed entropy over the time t is given
by

HR
t ≡ −

∑
ωωω

p(ωωω) ln p(ωωωR) (14)

= −
∑
ω

p(ω) ln p(ω)− (n−1)
∑
ωω′

p(ω)P (ω|ω′) ln P(ω′|ω) (15)

and the time-reversed entropy per unit time of the Markov chain by

hR = lim
t→∞

1
t
HR

t =−
∑
ωω′

p(ω)P (ω|ω′) ln P(ω′|ω), (16)

which differs from the KS entropy (13) by the permutation of the indices
ω and ω′ in the transition probability appearing in the logarithm.

The difference between both entropies per unit time (16) and (13) is
equal to

hR −h= 1
2

∑
ωω′

[
p(ω)P (ω|ω′)−p(ω′)P (ω′|ω)

]
ln

p(ω)P (ω|ω′)
p(ω′)P (ω′|ω)

�0, (17)

which is nonnegative.
In order to identify the right-hand member of Eq. (17) as the entropy

production of the Markov chain over one time step, we introduce the
entropy of the probability distribution {pt (ω)} of the coarse-grained states

St ≡−
∑
ω

pt (ω) ln pt (ω). (18)

The time evolution of the entropy is ruled by Eq. (8) which can be rewrit-
ten in the following form by using the condition (7) for the conservation
of probability:

pt+1(ω
′)−pt (ω

′)=
∑
ω

[
pt (ω)P (ω|ω′)−pt (ω

′)P (ω′|ω)
]
. (19)
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Accordingly, the time variation of the entropy (18) can be split as

�St ≡St+1 −St =�eSt +�iSt (20)

into the entropy flow

�eSt ≡−
∑
ωω′

pt (ω)P (ω|ω′) ln
pt+1(ω)P (ω|ω′)
pt (ω)P (ω′|ω)

(21)

and the entropy production

�iSt ≡ 1
2

∑
ωω′

[
pt (ω)P (ω|ω′)−pt (ω

′)P (ω′|ω)
]

ln
pt (ω)P (ω|ω′)
pt (ω′)P (ω′|ω)

�0. (22)

In a stationary state pt (ω)=p(ω), we notice that the entropy production
(22) reduces to the expression in the right-hand side of Eq. (17) which
proves our central result

�iS =hR −h�0 (23)

for the case of Markov chains where τ =1.

4. TIME-CONTINUOUS JUMP PROCESSES

In this section, we consider jump processes ruled by the master equa-
tion

d

dt
pt (ω

′)=
∑
ω

pt (ω)Wωω′ (24)

for the time-dependent probability pt (ω) to find the system in the coarse
grained state ω. The master equation conserves the total probability so
that the transition rates Wωω′ satisfy the condition

∑
ω′

Wωω′ =0. (25)

Consequently, the master equation (24) can be written in the alternative
form

d

dt
pt (ω

′)=
∑
ω

[
pt (ω)Wωω′ −pt (ω

′)Wω′ω
]
. (26)
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Examples of such jump processes include birth-and-death processes
in stochastic chemical kinetics and population dynamics,(15–18) as well as
kinetic processes in quantum field theory(19) and in quantum optics(20)

where Eq. (24) is known as Pauli’s master equation.(21)

The conditional probability that the system is in the coarse-grained
state ω′ while it was in the state ω at a time interval τ before is given by

Pτ (ω|ω′)=
[
eWτ

]
ωω′ , (27)

where W is the matrix of transition rates Wωω′ . If the time interval is
small, we find that

Pτ (ω|ω′)= δωω′ +Wωω′τ +O(τ 2). (28)

The jump process is Markovian so that the probability of observing the
system in the succession of coarse-grained states ω0ω1...ωn−1 at regular
time intervals tk =kτ is given by

p(ω0ω1 . . . ωn−1)=p(ω0)Pτ (ω0|ω1)Pτ (ω1|ω2) . . . Pτ (ωn−2|ωn−1), (29)

where the probabilities {p(ω)} form the stationary solution of the master
equation (24)

d

dt
p(ω′)=

∑
ω

p(ω)Wωω′ =0. (30)

Using Eq. (13), the entropy per unit time is here given by

h(τ)=
(

ln
e
τ

) ∑
ω �=ω′

p(ω)Wωω′ −
∑
ω �=ω′

p(ω)Wωω′ ln Wωω′ +O(τ), (31)

which is nothing else than the τ -entropy per unit time characterizing the
dynamical randomness of the jump process, as obtained by Gaspard and
Wang.(22) Using Eq. (16), we similarly obtain the time-reversed entropy
per unit time as

hR(τ )=
(

ln
e
τ

) ∑
ω �=ω′

p(ω)Wωω′ −
∑
ω �=ω′

p(ω)Wωω′ ln Wω′ω +O(τ), (32)
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which differs from the τ -entropy per unit time by the permutation of the
indices ω and ω′ of the transition rate inside the logarithm. The time
reversed entropy per unit time also depends on the time interval τ as the
τ -entropy per unit time. The reason for the logarithmic increase of these
dynamical entropies at small values of τ is that the waiting time between
the jumps is a continuous random variable τ which is exponentially dis-
tributed. As a consequence, the amount of randomness required to gen-
erate the process increases with the time resolution as ln(1/τ). Now, the
difference between both dynamical entropies (32) and (31) is given by

hR(τ )−h(τ)= 1
2

∑
ω �=ω′

[
p(ω)Wωω′ −p(ω′)Wω′ω

]
ln

p(ω)Wωω′

p(ω′)Wω′ω
+O(τ), (33)

where τ can be arbitrarily small.
On the other hand, in a NESS, the entropy flow (21) with the condi-

tional probability (28) of the jump process is equal to

1
τ

�τ
e S =−1

2

∑
ω �=ω′

[
p(ω)Wωω′ −p(ω′)Wω′ω

]
ln

Wωω′

Wω′ω
+O(τ) (34)

and the entropy production (22) by

1
τ

�τ
i S = 1

2

∑
ω �=ω′

[
p(ω)Wωω′ −p(ω′)Wω′ω

]
ln

p(ω)Wωω′

p(ω′)Wω′ω
+O(τ). (35)

Equations (34) and (35) are the known expressions for the entropy flow
and the entropy production of jump processes.(18,23)

Therefore, the difference (33) between the dynamical entropies is
equal to the entropy production in the NESS

1
τ

�τ
i S =hR(τ )−h(τ)�0 (36)

in the limit where τ is arbitrarily small. We have thus proved our central
result for the case of jump processes.
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5. CONNECTION TO THE LEBOWITZ–SPOHN–MAES APPROACH

Recently, Lebowitz and Spohn(9) as well as Maes(10) have emphasized
the fact that the probability of a path or history of a random process tak-
ing place in space and time is a Gibbsian measure. Gibbsian measures are
characterized by an exponential decay of the path probability by increas-
ing the volume of the space-time domain considered. This exponential
decay is typically associated with a positive entropy per unit time or a pos-
itive entropy per unit time and unit volume.

In this framework, the following identity has been derived between
the probabilities of the forward and backward paths

p(ωωωR)= e−Zt (ωωω) p(ωt )

p(ω0)
p(ωωω) (37)

in terms of a quantity Zt(ωωω) which measures the defect of detailed balance
in the NESS.(9,10) For Markovian processes, this quantity is defined as

Zt(ω0ω1 . . . ωn−1)≡ ln
P(ω0|ω1)P (ω1|ω2) . . . P (ωn−2|ωn−1)

P (ω1|ω0)P (ω2|ω1) . . . P (ωn−1|ωn−2)
. (38)

The statistical average of the quantity (38) grows linearly at a rate given
by the entropy production in the NESS

lim
t→∞

1
t
〈Zt 〉= 1

τ
�τ

i S. (39)

If we take the logarithm of both sides of the identity (37) and average over
the path probability of the NESS, we get

HR
t =〈Zt 〉+Ht . (40)

If we divide Eq. (40) by the time t and take the limit t →∞, we recover
the identity

1
τ

�τ
i S =hR −h. (41)

This result suggests that the formula (41) could extend to more general
random processes.
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6. REACTIVE PROCESSES

In this section, we apply the relationship established in the previous
sections to nonequilibrium chemical reactions. On nanoscales, reactions
are affected by molecular fluctuations, which requires a stochastic descrip-
tion. Reactive nanosystems are described in terms of the numbers of the
molecules of the different chemical species involved in the reaction. These
numbers undergo random jumps according to some network of reactions
ρ =1,2, . . . , r:

a∑
i=1

νi
<ρ Ai +

c∑
j=1

ν
j
<ρ Xj

k+ρ

�
k−ρ

a∑
i=1

νi
>ρ Ai +

c∑
j=1

ν
j
>ρ Xj . (42)

Besides the intermediate chemical species {Xj }c
j=1, the chemical species

{Ai}a
i=1 are supplied at constant concentrations by reservoirs, also called

chemiostats. We suppose that the reactions take place in a homogeneous
and isothermal system such as a continuously stirred tank reactor con-
nected to the chemiostats. At the instant of a reactive event ρ, the num-
bers of molecules of the intermediate species jump by integer values given
by the stoichiometric coefficients

νj
ρ ≡ν

j
>ρ −ν

j
<ρ =−ν

j
−ρ (43)

with j = 1,2, . . . , c. Such a reactive process is thus a particular case of
time-continuous jump processes.

The probability P(XXX; t) that the reactor contains the molecular num-
bers XXX at time t is ruled by the master equation

d

dt
P (XXX; t)=

±r∑
ρ=±1

[
P(XXX −νννρ; t)Wρ(XXX −νννρ |XXX)−P(XXX; t)W−ρ(XXX|XXX −νννρ)

]
.

(44)

As proposed by Nicolis and coworkers,(15–17) the transition rates are given
in dilute systems according to the mass-action law:

Wρ(XXX|XXX +νννρ)=Ω kρ

a∏
i=1

[Ai ]ν
i
<ρ

c∏
j=1

Xj

Ω

Xj −1
Ω

Xj −2
Ω

· · · Xj −ν
j
<ρ +1

Ω
,

(45)
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(ρ =±1,±2, . . . ,±r) where Ω is an extensivity parameter proportional to
the total number of particles in the reactor, kρ is the reaction coefficient,
and [Ai ] is the concentration of the species Ai from the chemiostats.

If the system is in the state XXX, the next reaction ρ occurs with the
probability

Pρ = Wρ(XXX|XXX +νννρ)∑±r
ρ′=±1 Wρ′(XXX|XXX +νννρ′)

(46)

and the corresponding waiting time has the exponential probability distri-
bution of density

P(T )=κ exp(−κT ) with κ =
±r∑

ρ′=±1

Wρ′(XXX|XXX +νννρ′) (47)

which defines Gillespie’s algorithm(24,25) for the simulation of the reactive
process.

A path or history of the system is a succession of molecular numbers
{XXXl} and reactive events {ρl} occurring at random times {tl}:

X (t)=XXX0
ρ1−→XXX1

ρ2−→XXX2
ρ3−→· · · ρm−→XXXm. (48)

The successive molecular numbers and jump times are related by

XXXl = XXXl−1 +νννρl
,

tl = tl−1 +Tl (49)

with l = 1,2, . . . ,m, where the waiting times Tl till the next jump are the
continuous random variables which are exponentially distributed accord-
ing to Eq. (47).

Since the path (48) is specified by the molecular numbers {XXXl} and the
reactions {ρl}, the symbols used in the previous sections should be defined
as ω =XXX

ρ−→XXX′. If the reactive process is stroboscopically observed with
the sampling time τ , the probability of the path (48) with t =nτ is given
by

p(ω0ω1 . . . ωn−1) = pst[X (t)]=Pst(XXX0)Pτ (XXX0
ρ1−→XXX1)

×Pτ (XXX1
ρ2−→XXX2) · · · Pτ (XXXn−1

ρn−→XXXn), (50)
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where ρ ∈ {0,±1,±2, . . . ,±r}. Here, we adopt the convention that ρ = 0
in the case where no reactive event occurs in the time interval τ . The
molecular numbers in the multiple-time probability are now defined by
XXXk =XXX(kτ) with k = 0,1,2, . . . , n. The conditional probabilities are given
in terms of the transition rates as

Pτ (XXX
ρ−→XXX′)=

{
Wρ(XXX|XXX′) τ +O(τ 2) if ρ �=0,

1−∑±r
ρ=±1 Wρ(XXX|XXX′) τ +O(τ 2) if ρ =0.

(51)

Accordingly, the τ -entropy per unit time (31) is here given by

h(τ) =
(

ln
e
τ

) ∑
ρXXXXXX′

Pst(XXX)Wρ(XXX|XXX′)

−
∑

ρXXXXXX′
Pst(XXX)Wρ(XXX|XXX′) ln Wρ(XXX|XXX′)+O(τ) (52)

and the time-reversed τ -entropy per unit time (32) by

hR(τ ) =
(

ln
e
τ

) ∑
ρXXXXXX′

Pst(XXX)Wρ(XXX|XXX′)

−
∑

ρXXXXXX′
Pst(XXX)Wρ(XXX|XXX′) ln W−ρ(XXX′|XXX)+O(τ). (53)

Their difference no longer contains the terms in ln(e/τ):

hR(τ )−h(τ) = 1
2

∑
ρXXXXXX′

[
Pst(XXX)Wρ(XXX|XXX′)−Pst(XXX

′)W−ρ(XXX′|XXX)
]

× ln
Wρ(XXX|XXX′)
W−ρ(XXX′|XXX)

+O(τ). (54)

In a NESS, the probabilities are constant in time: (d/dt)Pst(XXX)= 0. As a
consequence of the master equation (44), we find that

hR(τ )−h(τ) = 1
2

∑
ρXXXXXX′

[
Pst(XXX)Wρ(XXX|XXX′)−Pst(XXX

′)W−ρ(XXX′|XXX)
]

× ln
Pst(XXX)Wρ(XXX|XXX′)

Pst(XXX′)W−ρ(XXX′|XXX)
+O(τ)�0. (55)
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In the limit τ →0, the right-hand side is thus equal to the known expres-
sion for the entropy production for reactive processes,(23) which proves in
this case the relationship (6)

hR(τ )−h(τ)= 1
τ

�τ
i S �0 (56)

between the entropies per unit time and the entropy production of chem-
ical reactions.

7. DISCUSSION

The purpose of this section is to comment on the formula (6) between
the entropy production and the direct and time-reversed entropies per unit
time and its possible further applications.

At the microscopic level of description, the entropies per unit time
are quantities of the order of magnitude of the sum of positive Lyapu-
nov exponents as suggested by Pesin’s theorem.(13) Therefore, the entropies
per unit time are typically of the order of the inverse of a kinetic time
scale multiplied by the Avogadro number. Taking the difference between
two such large numbers as done in Eq. (6) allows us to obtain a quantity
having the order of magnitude of the inverse of a hydrodynamic time scale
as it is the case for the entropy production. In this regard, the relation-
ship (6) is similar to the escape-rate formulae, which relate the transport
coefficients to the difference between the sum of positive Lyapunov expo-
nents and the Kolmogorov–Sinai entropy per unit time in open systems
with absorbing boundary conditions.(2,4,5) The formula (6) thus belongs to
the same family of large-deviation relationships as the escape-rate formu-
lae of refs. 2, 4, 5.

Furthermore, the formula (6) can also be applied to deterministic
thermostated models of particles moving in external fields.(26–30) In these
models, a nonHamiltonian force is added to compensate the heating effect
of the external fields so that the system can reach a nonequilibrium
steady-state. The nonHamiltonian force preserves the time-reversal symme-
try but violates Liouville’s theorem of phase-space volume conservation, as
a consequence of which there is a nonvanishing mean contraction rate of
the phase-space volumes in the nonequilibrium steady-state of these mod-
els. In some models such as the Gaussian thermostated Lorentz gas,(26,27)

the mean contraction rate has been identified with the entropy produc-
tion in the nonequilibrium steady-state. In such dynamical systems, the
nonequilibrium steady-state is described by a SRB invariant probability
measure.(29,30) For a partition into arbitrarily small phase-space cells, the
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entropy per unit time becomes equal to the KS entropy which is given by
the sum of positive Lyapunov exponents according to Pesin’s theorem

h=
∑
λi>0

λi. (57)

On the other hand, the time-reversed entropy per unit time is given
according to Eq. (5) by the decay of the multiple-time probability along
a path running backward in time. For a partition into arbitrarily small
phase-space cells, the rate of this decay is equal to the sum of the absolute
values of the negative Lyapunov exponents

hR =
∑
λi<0

|λi |=−
∑
λi<0

λi. (58)

The formula (6) shows that the entropy production is then equal to minus
the sum of all the Lyapunov exponents and, thus, to the mean phase-space
contraction rate

1
τ

�τ
i S =hR −h=−

∑
λi<0

λi −
∑
λi>0

λi =−
∑

i

λi (59)

as expected. It should here be noticed that systems exist in which the
entropy production may not be identified with a phase-space contraction
rate. This includes the systems with stochastic thermostats,(31) as well as
the systems thermostated by deterministic scattering.(32,33) The formula (6)
can be useful to extend the previously known relationship (59) to such
more general systems.

A further example of application is to the process of erasure of a
computer memory.(34,35) We suppose that the computer memory contains
a long arbitrary sequence of bits 0 or 1 and that the erasing device suc-
cessively deletes them at a rate of one bit per unit time. This erasing pro-
cess is without production of information and its entropy per unit time is
thus vanishing: h=0. In contrast, the time-reversed process produces infor-
mation at a rate of one new bit per unit time so that the time-reversed
entropy per unit time is equal to hR = ln 2. According to Eq. (6), the
entropy production of the erasing process is equal to �iS =hR −h= ln 2
per bit in agreement with Landauer’s and Bennett’s conclusion.(34,35)

The formula (6) can be applied to very general situations because the
entropies per unit time can be defined for broad classes of nonequilibrium
processes.
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8. CONCLUSIONS

In this paper, we have introduced the concept of time-reversed entropy
per unit time in analogy with the entropy per unit time known since the
work by Shannon,(6) Kolmogorov,(7) and Sinai.(8) Thanks to this new con-
cept, we have shown that, in Markovian random processes, the entropy
production is equal to the difference between the time-reversed and the
standard entropies per unit time.

The standard entropy per unit time is known to characterize the
dynamical randomness of the forward paths or histories of a stochastic
process. On the other hand, the time-reversed entropy per unit time char-
acterizes the dynamical randomness of the backward paths or histories
with respect to their corresponding forward paths. We have here shown
that, out of equilibrium, the difference between the dynamical random-
nesses of the forward and backward paths or histories turns out to be
directly related to the entropy production. Since the difference between
both entropies per unit time is a relative entropy (per unit time) which is
a quantity known to be positive,(14) our result is in agreement with the
second law of thermodynamics. Our result provides an interpretation of
the entropy production as a manifestation of the time-reversal symmetry
breaking on the dynamical randomness of the microscopic process. The
time-reversal symmetry breaking is caused by the flux boundary conditions
imposed by the nonequilibrium constraints at the borders of the system.
These nonequilibrium boundary conditions select trajectories with a prob-
ability weight and a dynamical randomness which are not time-reversal
symmetric so that there is a positive entropy production in the NESS.

We notice that the identity (6) has been obtained for Markovian sto-
chastic processes, which leaves open the question of its status with respect
to the underlying microscopic dynamics. To answer such a question, we
would need to define the nonequilibrium steady state at the microscopic
level of description as already done for simple models such as the mul-
tibaker map and the Lorentz gases in refs. 1 and 2. Furthermore, we
should use a definition of entropy and entropy production which is appro-
priate for nonequilibrium steady states of volume-preserving deterministic
dynamics.(36,37) We hope to report on this issue in a future publication.
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